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New formulae for the approximate computation of total molecular energies 
are developed based on ab initio calculations of n-alkanes. Their application 
to various kinds of molecules reveals that good expectation values for total 
molecular energies can be obtained by considering only the one-electron terms 
hi and the nuclear repulsion energy. It is further shown that very good 
agreement with SCF total energies is obtained by a relationship which connects 
the total energy with the sum of inner-shell (core) orbital energies. The results 
turn out to be better than those obtained using Ruedenberg's approximation, 
which takes both inner-shell and valence-shell orbital energies into account. 
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There has always been a large interest in the formulation of heuristic and simple 
rules to be used for the rationalization of molecular properties. Actually there is 
an increasing interest in simple additive schemes for total molecular energies 
which can be applied, e.g. in semi-empirical theories. In this context Politzer [1] 
has argued that within the SCF-treatment the approximation 

Etot = (3/7) * (Vne+2 Vnn ) (1) 

(where Vne denotes the nuclear/electronic attraction and gnn the nuclear repul- 
sion) is approximately fulfilled for molecules at their equilibrium structure. 
Combining (1) with the rigorous Hartree-Fock identity 

Etot = Y~ vie, + V ~ -  V~ (2) 
i 
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(where ei is the ith orbital energy, vi the ith occupation number and Vee the total 
electronic repulsion energy) and the virial theorem, leads to Ruedenberg's 
approximation [2] 

Eto t = (3/2)  * Y, vie~. (3) 
i 

The corresponding empirical formula is 

E,ot = 1.55 * ~ vie, (4) 
i 

and is in general a somewhat closer approximation. 

Following the ideas of Politzer and Ruedenberg we investigate whether other, 
generally valid relationships between Eto t and its energy components can be 
found, which could be used in an additive scheme for the computation of Eto t. 

For this purpose, ab initio calculations at the SCF/4-31G level were carried out 
for 40 molecules of various types using the Gaussian 82 program package [3]. 
For all molecules, standard geometry was assumed [4]. The total energies and 
their energy components found for n-alkanes (n = 1-10) are presented in Table 
1. These results are analysed for linear correlations between Eto t and their 

Table 1. Total molecular energies and their energy components for n-alkanes (n = 1-10), determined 
using a 4-31G model. All energies are given in atomic units 

n Eto t Vnn Eel -- V~ T T V 

1 -40.1395 13.4354 -53.57494 1.9996 -40.1556 -80.2952 
2 -79.1148 42.2334 -121.34821 1.9991 -79.1861 -158.3009 
3 -118.0921 82.6934 -200.78546 1 . 9989  -118.2222 -236.3143 
4 -157.0689 131.0088 -288.07773 1.9988 -157.2576 -314.3265 
5 -196.0456 185.6137 -381.65936 1 . 9988  -196.2812 -392.3268 
6 -235.0224 245.2445 -480.26686 1 . 9987  -235.3283 -470.3506 
7 -273.9991 309.1696 -583.16873 1.9987 -274.3557 -548.3548 
8 -312.9758 376.7704 -689,74622 1.9986 -313.4146 -626.3904 
9 -351.9525 447.6294 -799,58194 1.9986 -352.4459 -704.3984 

10 -390.9292 521.3814 -912,31061 1.9986 -391.4773 -782.4065 

n V~, V ~  Vl~ ~ 2 ~ e i 2 Y. el,,k 2 Y. e,,~,.p 
i k p 

1 -93.7306 26.0548 -119.7854 -27.52010 -22.3735 -5.1466 
2 -200.5343 67.5218 -268.0561 -53.82646 -44.7676 -9.0589 
3 -319.0076 120.6524 -439.6600 -80.13304 -67.1548 -12.9783 
4 -445.3354 1 8 1 . 6 5 0 1  -626.9854 -106.42768 -89.5381 -16.8896 
5 -577.9405 248.9417 -826.8822 -132.71768 -111.9198 -20.7979 
6 -715.5951 321.2627 -1036.8579 -159.00414 -134.3005 -24.7036 
7 -857.5245 397.8806 -1255.4051 -185.28808 -156.6804 -28.6076 
8 -1003.1608 478.1760 -1481.3368 -211.57024 -179.0599 -32.5103 
9 -1152.0279 561.7308 -1713.7587 -237.85112 -201.4390 -36.4121 

10 -1303.7879 648.1794 -1951.9673 -264.13118 -223.8179 -40.3133 
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components ,  which are then tested on the entire list o f  molecules (see Tables 1 
and 2). 

The examination of Table 1 leads to the following observations: 

1. The total energy Eto t is a linear function of n. Since the virial theorem is obeyed 
rather closely ( - V ~  T ~ 2.0), the same is true for V and T. A linear regression 
calculation for Etot(n) yields 

E t o t ( n  ) = (-1.1621 • 0.0004) - (38.9767 • 0.0131)n (5) 

with a standard error s = 0.0003. Note  that this strict linearity is not an artefact 
resulting from the use of  standard geometry. Test calculations have shown that 
an equally good regression is obtained when the geometry of  the molecules is 
optimized. 

2. Although Eto t is a linear function of n, its components, Vn~ and Eel (where 
Ee~ is the total electronic energy), show a more complex dependence on n, as 
can be seen in Fig. 1. 

3. Forming the sum Vne + 2 Vnn as well as the difference g e e - -  Vnr~ for each n leads 
to the linear functions depicted in in Fig. 2. Also included in Fig. 2 is the ratio 
--(Vne+2Vnn)/(Ve~--Vn,) (filled triangles) for each n, which was discussed by 
Politzer [1] and was widely tested by Snyder and Basch [5]. It exhibits approxi- 
mately constant values for each n, the mean being 7.21 with a standard deviation 
of 0.06. This value lies somewhat outside the range of the reference value 
(6.7 + 0.44) given by Snyder and Basch. 

Fig. 1. The total energy Eto t 
and its energy components 
Vnn and Ee~ showing their 
dependence on n 
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Fig. 2. The sum Vne§ and the difference 
W e e -  Wnn as well as their ratio 
- (  Vn~ + 2 Vnn)/ ( V~ - Vow) showing their 
dependence on n 

4. From the linear dependence on n of both Eto t and the difference Vee-- Vnn 
as well as from Eq. (2), it follows that ~ ei is linear in n. ~ ei can be written in 
terms of two sums according to 

2 e; = g hi + E (24k - Kik) 
i i i,k (6) 

H Ve~ 

with 

H = ( 1 / 2 ) , ( V n e +  T),  

where Jik, K~k are the matrix elements for the Coulomb- and exchange- 
interaction, respectively. Since (Vee-- Vn,) turns out to be linear in n, the same 
must be true for ( H +  Vnn). Combining Ruedenberg's formula with Eq. (2) 
implies that 

fee/nn =- Etot/( Fee -- Vnn) (7) 

and therefore 

fH/nn  = Etot / (H + Vnn) (8) 

have to be independent of n. 

5. The energies els, describing the inner-shell (Cls)-electrons, are all of the 
same size and are well separated from the orbital energies associated with the 
valence electrons. Thus ~i e~ can be partitioned into a sum of nk inner-shell 
orbital energies e~,,g and a sum of np valence-shell orbital energies ev~,p. The 
ratios between Etot and their energy components ~i ei(fR), ~k S~,k(f~) and 
H +  Vnn ( f H / ~ )  are collected in Table 2 for the whole list of molecules 
investigated. 
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Table 2. The ratios fR = Etot/2 ~, e i , f l  s = Etot/2 ~ els, k , and fH/n n for various kinds of molecules. Total 
energies Eto t in atomic units obtained using the ratio fH/nn and the SCF-method. The values in 
parentheses are deviations in Eto t in percent 

Molecules f R  f l s  fH /nn  E~ot (A%) Eto t 

(fH/nn) (SEE) 

1. Methane 1.459 1.794 1.522 -39.4538 (-1.71) -40.1395 
2. Ethane 1.470 1.767 1.516 -78.0711 (-1.32) -79.1148 
3. Propane 1.474 1.759 1.514 -116.6881 (-1.19) -118.0921 
4. Butane 1.476 1.754 1.512 -155.0689 (-1.06) -157.0689 
5. Isobutane 1.476 1.754 1.513 -155.3058 (-1.12) -157.0706 
6. Pentane 1.477 1.752 1.512 -193.9710 (-1.06) 196.0456 
7. Isopentane 1.477 1.752 1.512 -193.9682 (-1.06) -196.0427 
8. Neopentane 1.477 1.752 1.512 -193.9751 (-1.06) -196.0497 
9. Hexane 1.478 1.750 1.511 -232.6893 (-0.99)  -235.0224 

10. Isohexane 1.478 1.750 1.511 -232.6862 ( 0 . 9 9 )  -235.0193 
11. 1,1-dimethylbutane 1.478 1.750 1.512 -232.5298 (-1.06) -235.0168 
12. 2,3-dimethylbutane 1.478 1.750 1.511 -232.6829 (-0.99) -235.0160 
13. Heptane 1.479 1.749 1.511 -271.2791 (-1.06) -273.9991 
14. Octane 1.479 1.748 1.511 -309.8688 (-1.06) -312.9758 
15. Nonane 1.480 1.747 1.510 -348.6894 (-0.93) -351.9525 
16. Decane 1.480 1.747 1.510 -387.3047 (-0.93) -390.9292 
17. Cyclopropane 1.478 1.737 1.512 -115.6097 (-1.06) -116.8462 
18. Ethylene 1.480 1.738 1.510 -77.9806 (-0.93) -77.9205 
19. Acetylene 1.492 1.709 1.504 -76.3031 (-0.53) -76.7111 
20. Pyrazine 1.486 1.697 1.507 -260.3607 (-0.73)  -262.2751 
21. Diazirine 1.507 1.725 1.496 -147.2962 (0.00) -147.2962 
22. Tetrazine 1.509 1.723 1.495 -294.2936 (0.07) -294.0969 
23. CH3CN 1.505 1.723 1.498 -131.4816 (-0.13) -131.6574 
24. Propenal 1.527 1.753 1.487 -190.2177 (-0.13) -190.4720 
25. Ketene 1.533 1.753 1.484 -152.4113 (0.61) -151.4944 
26. Acetamide 1.535 1.771 1.480 -209.8627 (1.08) -207.6182 
27. Isocyanamide 1.545 1.759 1.479 -169.4182 (1.15) -167.4930 
28. Methanol 1.557 1.808 1.473 -116.6634 (1.56) -114.8698 
29. CO 2 1.563 1.719 1.470 -190.6413 (1.77) -187.3280 
30. N O  2 1.554 1.780 1.475 -206.5968 (1.42) -203.6967 
31. N20 1.545 1.757 1.478 -185.5982 (1.22) -183.3651 
32. N204 1.580 1.778 1.463 -416.5429 (2.26) -407.3545 
33. H~O 1.606 1.850 1.452 -78.2076 (3.03) -75.9074 
34. NH 3 1.532 1.809 1.486 -56.4802 (0.67) -56.1027 
35. N2H 2 1.534 1.758 1.484 -110.6984 (0.81) -109.8104 
36. N2H 4 1.533 1.787 1.484 -111.7176 (0.81) -110.8215 
37. HCN 1.520 1.725 1.490 -93.1042 (0.40) -92.7308 
38. NF 3 1.635 1.855 1.441 -339.2745 (-2.31)  -351.9746 
39. B2H 6 1.405 1.729 1.552 -54.4458 (3.82) -52.4441 
40. BF3 1.651 1.860 1.434 -336.7404 (4.32) -322.7846 

Mean values 1.511 1.759 1.496 
Standard deviations 0.049 0.036 0.023 
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Examination of Table 2 leads to the following conclusions: 

1. The ratios fH/nn exhibit the smallest standard deviation. Thus a good 
approximation for Etot is given by 

Etnt = 1.496 * ( H +  Vnn ). (9) 

The corresponding ratios fee/n, are not so well behaved and are therefore not 
included in Table 2. 

2. The ratios f~s exhibit a smaller standard deviation than fR. This reveals that 
instead of connecting the total energy to the sum of inner-shell and valence-shell 
orbital energies, better agreement with SCF total energies is obtained by taking 
only the inner-shell orbital energies into account. Thus one can write 

Eto t = 1.759 * ~ els, k. (10) 
k 

Note that f l ,  exhibits the same values for the branched hydrocarbons in this list 
(5, 7, 8, 10-12) as for the unbranched ones. This guarantees that the estimates for 
Eto t based on f ~  lead to the correct order of relative stability for these compounds. 
Unfortunately, no consistent value could be found for the ratio of Etot to the 
sum of valence-shell energies. 

3. The agreement between the total energies computed using Eq. (8) and the 
SCF-results (see Table 2) is most satisfactory. 
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